
Teacher-Student Framework:
A Reinforcement Learning Approach

Matthieu Zimmer(1,2), Paolo Viappiani(1,2), and Paul Weng(1,2)

(1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
(2) CNRS, UMR 7606, LIP6, F-75005, Paris, France

{matthieu.zimmer,paolo.viappiani,paul.weng}@lip6.fr

Abstract. We propose a reinforcement learning approach to learning
to teach. Following Torrey and Taylor’s framework [18], an agent (the
“teacher”) advises another one (the “student”) by suggesting actions
the latter should take while learning a specific task in a sequential de-
cision problem; the teacher is limited by a “budget” (the number of
times such advice can be given). Our approach assumes a principled
decision-theoretic setting; both the student and the teacher are modeled
as reinforcement learning agents. We provide experimental results with
the Mountain car domain, showing how our approach outperforms the
heuristics proposed by Torrey and Taylor [18]. Moreover, we propose a
technique for a student to take into account advice more efficiently and
we experimentally show that performances are improved in Torrey and
Taylor’s setting.

Keywords: reinforcement learning, reinforcement learning with rich feed-
back, teaching on a budget

1 Introduction

Reinforcement learning (RL) [10] is a framework for solving sequential decision
problems where an agent interacts with the environment and adapt her policy
taking into account a numerical reward signal. RL agents can autonomously
learn somewhat difficult tasks, like navigating a maze or playing a video game.
While the basic setting of RL is now well established, recently a number of
researchers have been studying variants where agents have access to demonstra-
tions of successful task completion (learning by demonstration or by imitation
[3, 4]), or where the knowledge acquired for a particular task needs to be used
to solve a similar related task (transfer learning [16]) or other settings where
agents interacts with each other. The common ground of these works is that
learning can be faster by exploiting additional information for the task at hand;
this intuition goes back to the idea behind reward shaping [13, 11].

In this paper, we consider an agent charged with the task of teaching another
agent how to perform a particular task. The idea of integrating teaching in RL is
not new (e.g., [12, 17, 9]). Recently, a number of researchers have proposed simi-
lar settings but with different assumptions and communication protocols [6, 1, 7,

2 Teacher-Student Framework: A Reinforcement Learning Approach

2]. However, in this literature, the teacher is always assumed to be a human. We
assume here that the teacher is an artificial agent. This teaching problem was
studied by Torrey and Taylor [18] who introduced a teacher-student framework
for reinforcement learning and proposed a number of simple heuristic methods
for choosing in which situations to provide advice (the best action) to the stu-
dent. An important assumption in this framework is that a “budget” (maximum
number of suggestions that can be given) is fixed, and therefore it is really im-
portant to carefully decide when (and which) advice to give. The constraint of
a limited budget for teaching is justified in two situations [18]. In some prob-
lems, communication is constrained and limited (e.g., cost of communication),
even if all agents are artificial. This framework could also be extended to human
students and in this case, obviously the number of advice has to be small.

The setting in this paper assumes that the teacher (who knows the optimal
policy) observes the student (her state) but cannot monitor nor change anything
internal to the student. Communications rely on a very simple protocol: at each
step of an episode, the student announces her intended action and the teacher can
decide whether to provide some advice. A piece of advice consists in suggesting
the action that the student should do (according to the optimal policy, known to
the teacher but not to the student). In this paper, we try to answer two questions.
From the teacher’s point of view, how advice can be given efficiently? From the
students’ point of view, how can a piece of advice be efficiently exploited (in the
RL setting)?

In this paper we assume a principled decision-theoretic approach where teach-
ing is itself formulated as a reinforcement learning problem. Our intuition is that
in this way we can provide efficient techniques for choosing the right moment
at which advice should be given. For instance, the teacher should be able to
autonomously learn that a student who chooses a good enough action does not
need advice, or that most of the advice (but not all) will be needed in the first
episodes of training, and that in some states it is more critical to perform a good
action than in others. Moreover, with our approach, the teacher could adapt to
particular types of learners and overcome differences in state representation.

2 Reinforcement Learning

Reinforcement learning (RL) [15] is a framework that models sequential decision
problems where an agent learns to make better decisions while interacting with
the environment. After an agent performs an action, the state changes and the
agent receives a numerical value, called reward, that encodes “local” information
about the quality of the action just taken. The goal of the agent is to maximize
her long-term expected total reward. Because it is possible that actions associ-
ated with low reward will allow the agent to reach high-reward states, the agent
needs to estimate somehow (by trial-and-error) the value of making an action in
a given state.

The underlying formalism of RL is that of Markov Decision Processes (MDPs).
An MDP is formally defined as a tuple 〈S,A, T,R〉 where S is a set of states, A

Teacher-Student Framework: A Reinforcement Learning Approach 3

a set of actions, T : S×A×S → [0, 1] are transition probabilities between states
(T (s, a, s′) = p(s′|a, s) is the probability of reaching state s′ from state s after
executing action a) and R : S × A → R is a reward signal. A (deterministic)
policy π : S → A is a mapping from states to action (the action to be taken in
each state) and encodes how the agent will behave. The optimal policy π∗ is the
policy maximizing the expected total reward, that is (for episodic reinforcement
learning with a horizon Tmax):

π∗ = arg max
π

E[

Tmax∑
t=0

R(st, πt(st))] (1)

where t denotes a time step and Tmax the maximum number of steps. In MDPs,
since T and R are given, an optimal policy π∗ can be computed offline using
dynamic programming (e.g., value iteration, policy iteration) [8] for instance.

In the RL setting, the agent however does not know the transition proba-
bilities T and the reward function R. There are two main approaches for learn-
ing an optimal policy in RL: model-based approach and model-free approach.
While model-based methods aim at learning T and R, model-free methods are
computationally more viable techniques that perform online learning storing an
estimation of Q : S × A → R, the (sequential) values of actions in each state.
Whenever an action is taken and a reward is observed, the agent updates the
value of Q(s, a) using the following formula:

Q(s, a) = Q(s, a)+α[R(s, a)−Q(s, a)︸ ︷︷ ︸
adjustment given observed reward

+ γQ(st+1, at+1)︸ ︷︷ ︸
estimation of future rewards

] (2)

where α ∈]0, 1[is the learning rate (empirically, if the task is highly stochastic
α needs to be low, alternatively it can be set to a high value and then the agent
might be able to learn faster) and γ the discount rate.

In RL the agent faces the exploitation versus exploration dilemma, that means
choosing whether to focus on high reward actions (but at the cost of ignoring
potentially more valuable regions of the world) or performing actions with the
intent of exploring other regions (but at the cost of giving up reward in the short
term). One simple strategy to solve this tension is ε-greedy, that exploits most
of the time, but with a small probability performs a (random) exploration move,
i.e., π(s) = arg max

a
Q(s, a) with probability 1−ε and π(s) is a random uniformly

drawn action in A with probability ε. To determine a good value for ε one often
relies on experimental observations. Among the most common algorithms for
reinforcement learning are Sarsa and Q-learning [15].

Notice however that in many tasks, the number of states and actions are
too large so that the agent cannot store Q-values in a table. The problem of
continuous states can be tackled with discretization; however the number of
states will often explode. Even with the memory and computational power to
handle very large tables, reinforcement learning with Q values represented in the
tabular form suffers from the lack of generalization, meaning that what is learned
in a state does not impact our knowledge about the value of similar states. A

4 Teacher-Student Framework: A Reinforcement Learning Approach

solution to these problems is to use an approximation function, that provide
a means for both efficient computation and support for generalization. The Q
values is approximated by a function ψθ : S × A → R, i.e., Q(s, a) ≈ ψθ(s, a)
parametrized by a vector θ whose values are updated whenever receiving reward.
In this way, we can represent Q-values for continuous domains. Moreover this
allows generalizing what it is learned in a state to a different, but similar, state
(notice that ψθ can take many forms of supervised learning methods: neural
networks, linear regression, mixture of Gaussians, ...). In this paper, we assume
that the Q-values are expressed as a linear approximation function

Q(s, a) ≈ ψθ(s, a) =
∑
i

θi × fi(s, a) (3)

where the functions fi : S ×A→ R are given basis functions.

3 Teaching on a Budget

Torrey and Taylor [18] introduced a teacher-student framework for reinforcement
learning. In their framework, a student agent learns to perform a task through
reinforcement learning, while a teacher agent may suggest an action in order to
help the student learn faster. A few assumptions are made in this framework.
First of all, the teacher is also a RL learner and has already learned an optimal
policy. Moreover, the teacher and the student share a common action set. Be-
sides, the teacher can only give a limited number of advice, called budget. Finally,
the only means of communication between the two agents consists in the pos-
sibility for one agent to communicate an action to the other. More specifically,
the student announces the action that it is about to perform (before actually
performing it) and then the teacher may decide to give advice, in the form of
an action that the student should perform instead (an action better than the
announced one).

Formally, the framework can be described as follows. Given a task to be
learned by the student agent, letMtask = 〈Stask, Atask, Ttask, Rtask〉 be an MDP
representing it. The state representation of the student is denoted by Rstudent.
The state representation of the teacher, which is not necessarily identical to
Rstudent, is denoted by Rteacher. Typically, Rstudent and Rteacher are defined by
the shape of the tiles and their numbers; they can be viewed as “how the agents
perceive the environment”.

The student starts in an initial state and learns through trial and error (i.e.,
with any RL algorithm). We call episode a sequence of time steps from an initial
state to a goal state if the student manages to reach it or when a fixed maximum
number of steps is reached. When an episode ends, the student starts over in
a new initial state. We call session the sequence of episodes before the student
learns a good enough policy.

During a student learning session, the teacher may choose to advise the stu-
dent (i.e., communicate the best action according to the teacher’s optimal policy
to take in the current state of the student). The teacher can decide to spend her

Teacher-Student Framework: A Reinforcement Learning Approach 5

budget (i.e., the limited number of advice) through the whole learning session,
not only on one episode. Torrey and Taylor propose the following heuristic meth-
ods (where advice is given if a condition is satisfied) for the teacher to decide to
give advice or not. We review them below:

Early advising This very simple strategy consists in the teacher spending all
her budget at the very beginning of the session, providing advice at each
step until the budget is over. In this strategy, the student agent does not
need to announce the action that it is going to perform.

Importance advising This strategy consists in giving advice only in states
that are deemed “important”. For evaluating the importance I(s) of a state
s, Torrey and Taylor [18] adopt the following measure (initially proposed
by Clouse [5]): I(s) = max

a
Q(s, a) − min

a
Q(s, a). Then, at any timestep

of a session, until the whole budget is spent, advice is given only if the
importance I(s), of the state s the student is currently in, is greater than
a given (empirically optimized) threshold. In this strategy, the student does
not announce her action.

Mistake Correcting In the previous heuristics, the teacher wastes her budget
on situations where the student would have chosen on her own the recom-
mended action. Denote π∗ the optimal policy learned by the teacher. Mistake
correcting consists in giving advice only if π∗(s) 6= astudent and the state im-
portance I(s) is greater than a threshold.

Actually, Torrey and Taylor proposed another heuristic, Predictive Advising,
extending Mistake Correcting, where the student does not need to announce her
action. Using a classifier (in their implementation, a support vector machine)
the teacher learns to predict what action the student is likely to do next.

While these heuristics have proved successful in experiments, in the following
we show that by modeling the decision of when to give advice in a principled
decision-theoretic way (as a sequential decision problem), we can provide more
effective teaching agents. In the next section, we present how we model the
teaching task as a RL problem.

4 Learning to Teach

There are two main components in our approach. First, we model the teaching
task as a reinforcement learning problem (Section 4.1), i.e., the teacher agent
needs to learn a policy for deciding when to give advice. Doing so, we expect
that the teacher can learn a better policy for giving advice than those based on
the previous heuristics. Second, the student can also exploit more efficiently the
pieces of advice given by the teacher. We present a technique for improving the
estimation of the learner’s Q-values in order to be consistent with the information
provided by the teacher (Section 4.2). Note however that such a technique can
be used independently from the policy used by the teacher.

6 Teacher-Student Framework: A Reinforcement Learning Approach

4.1 The Teacher Model

In our approach, the teacher learns how to teach RL students efficiently, without
resorting to the previous heuristics, using reinforcement learning as well. As in
the teacher-student framework proposed by Torrey and Taylor [18], the teacher
first learns an optimal policy π∗ for Mtask in her state representation Rteacher.
Then, the teacher tries to learn a teaching policy, which would solve the same
problem as the heuristics methods recalled in Section 3.

Let Mteacher = 〈Steacher, Ateacher, Tteacher, Rteacher〉 be a MDP describ-
ing the teaching task. The set of states Steacher is defined by Stask × Atask ×
{0, 1, . . . , bmax}×N where bmax is the initial budget: the current state in Stask of
the student, the action in Atask announced by the student, a remaining budget
and a learning episode number of the student. Note that the state of the student
is observed in the teacher’s state representation Rteacher. Recall that it may
differ from that of the student Rstudent. An action is defined as an element of
Ateacher = {true, false}, telling whether an advice is given or not. If the teacher
decides to give advice for a state s, he sends π∗(s) to the student. The reward
function defined for Mteacher is

Rteacher(s, a) =

{
rmax − nstep

rd
if student reached goal

−1 otherwise
(4)

where nstep is the number of time steps the student needed to reach a goal state,
positive constant rmax is the greatest reward obtainable in Mtask and rd is a
positive constant such that the maximum number of time steps of an episode
divided by rd is greater than rmax. The definition of this reward function is
motivated as follows. The longer it takes for the student to reach her goal,
the less the teacher is rewarded. Thus, this implies that the teacher will try to
minimize the number of learning time steps for the student. Note that, due to rd,
the teacher is always better off when the student reaches a goal state, however
long it takes.

We call session one episode of this MDP, i.e., a full learning session of one stu-
dent overMtask. Through several sessions, the teacher experiments on multiple
learners.

4.2 Effect of Advice

In their paper, Torrey and Taylor [18] considers a piece of advice as an informed
exploration : the recommended action is performed (instead of the announced
action) as if it was chosen by the ε-greedy strategy, and the Q-value is updated
using the usual formula. This simple strategy has the advantage that the modi-
fication of the student’s RL algorithm is minimal. However, to make it effective,
all Q(s, a)’s need to be initialized in a pessimistic way, i.e. at a very low negative
value. Doing so guarantees that a recommended action performed once has a
greater chance of being chosen again as the best action when visiting the same
state in the future.

Teacher-Student Framework: A Reinforcement Learning Approach 7

In this section, we propose a more sophisticated strategy for the student to
take into account a recommended action. This new approach will change more
the student RL algorithm, but at the benefit of better estimations of Q-values. In
this approach, called max update, we want the student to exploit a piece of advice
not only once, but several times if needed. To that aim, we endow the student
with a memory of the previous recommended actions and the corresponding
states (of course, in the student state representation). We present the approach
in the tabular version first to make it easier to understand, then we extend it to
the case where approximation functions are used.

The first time an action ar is recommended in a state sr, the student performs
it like in the informed exploration approach. Although the student does not
know yet the correct value for Q(sr, ar), it nonetheless knows that the following
property shall be kept true:

∀a ∈ A,Q(sr, ar) ≥ Q(sr, a) (5)

If this property is not satisfied for sr, then there exists an action amax, different
from ar, such that amax = arg max

a
Q(sr, a). The näıve update where Q(sr, ar)

is set to the value of Q(sr, amax) may not work as there is no guarantee that
Q(sr, amax) has already converged and that it may not be a good approximation
of the true Q-value. Instead, we propose to make the following update:

Q(sr, ar) = Q(sr, ar) + α× (Q(sr, amax)−Q(sr, ar)) (6)

at every time steps. These updates help Q(sr, ar) converge faster towards the
target value Q(sr, amax) as their aim is to minimize the quadratic difference of
the two Q-values. Besides, as after each time step in the student RL algorithm,
the estimation of Q(sr, amax) may improve, the updates of Equation 6 may use
better and better approximations. If at any time, the property described by
Equation 5 is satisfied, these updates are not needed anymore and they are
stopped.

For the version using a function approximation (Equation 3), the update
needs to be performed on parameter θ. A component i of θ can be updated with
the following formula

θi = θi + α
∑
j

θj(fj(sr, amax)− fj(sr, ar))(fi(sr, amax)− fi(sr, ar)). (7)

This is a standard gradient descent for minimizing the quadratic difference of
Q(sr, ar) and Q(sr, amax).

We believe that this strategy is efficient in both settings (tabular RL and
function approximations) and in Section 5.4 we indeed show that can boost the
performance of a teacher. Another advantage of this new method is that we
do not need to initialize the Q(s, a) to a very low value (pessimistic initializa-
tion), since the property of Equation 5 is ensured by a series of specific updates
(Equation 6 and Equation 13); however this comes at the expenses of additional
computation at each step of the execution.

8 Teacher-Student Framework: A Reinforcement Learning Approach

5 Experiments

We evaluate our two strategies comparing it to the heuristic methods proposed
by Torrey and Taylor [18]. In the next three subsections, we recall the mountain
car domain [14], a popular benchmark for reinforcement learning and give some
details about the implementations of our two approaches. Then, we present our
experimental results in the last subsection.

5.1 Mountain Car

Fig. 1. The Mountain Car Problem

A standard testing domain in reinforcement learning is the mountain car
problem [14]: an under-powered car must drive up a steep hill (Figure 1). The
gravity is stronger than the car’s engine so, even at full throttle, the car cannot
simply accelerate up the steep slope; the agent must learn to gain momentum
as on a swing. The state is an element of a 2 dimensional continuous space:

(x, y) ∈ Position× V elocity with
{
Position = [−1.2, 0.6]
V elocity = [−0.07, 0.07]

(8)

The actions are valued in a one dimensional discrete space: a ∈ {−1, 0,+1}
corresponding to the directions of the acceleration, i.e., respectively backward,
no acceleration and forward. The reward for every step is −1 except when the
goal is reached (reward is 0). The transitions are defined as follows:{

yt+1 = yt + a× 0.001 + cos(3× xt)×−0.0025
xt+1 = xt + yt

(9)

If the position or the velocity go out of the bounds, their values are set at the
extreme bound of the respective domains. For the position, this corresponds to
an inelastic wall on the left hand side and the goal on the right hand side. The

Teacher-Student Framework: A Reinforcement Learning Approach 9

car begins each episode with zero velocity at the bottom of the mountain (initial
position (x0, y0) = (−0.5, 0)), and the episode ends when it reaches the goal at
the top (whenever x ≥ 0.6), or after 500 steps.

Since the state space is continuous, we rely on a function approximation of
Q, with the common approach of using a linear approximation function with a
binary tile coding:

Q(s, a) ≈ ψθ(s, a) =
∑
i

θi × fi(s, a) (10)

where fi : S×A→ {0, 1} with the semantics that a feature fi is “active” only in
some states (and therefore parameter θi only impacts the computation of Q for
some regions of the world). We denote by F the set of features that are active
for a state-action pair, i.e., F (s, a) = {i | fi(s, a) = 1}. In our implementation,
we assume a common tiling structure (of rectangular shape) for all actions and,
moreover, a feature can only depend on one action at a time (i.e., for a given state
s and two different actions a and a′, the number of active features is the same,
while their intersection is empty). More formally, the two following properties
are satisfied:

(i) ∀s ∈ S, ∀a, a′ ∈ A, a 6= a′ ⇒ (F (s, a) ∩ F (s, a′) = ∅)︸ ︷︷ ︸
independence

∧(|F (s, a)| = |F (s, a′)|)

(ii) ∀a, a′ ∈ A,∀fi,∃fj , {s ∈ S | fi(s, a) = 1} = {s ∈ S ‖ fj(s, a′) = 1}.

A common way of increasing the learning speed is to keep a trace of the last
updated pairs (s, a). In our implementation we use an accumulative trace:

et(s, a) =

{
γ × λ× et−1(s, a) if s 6= st or a 6= at
1 + et−1(s, a) otherwise

(11)

where λ ∈ [0, 1] is the size of the trace, γ is the discount factor. The update
step will adjust the Q-value of all pairs (s, a) for which et(s, a) 6= 0, using the
formula:

Q(s, a) = Q(s, a) + α× [R(s, a)−Q(s, a) + γ × Q(st+1, at+1)]× et(s, a) (12)

The algorithm used for students and teachers is Sarsa(λ). In our simulations,
the different reinforcement learning parameters for the student are ε = 0.05,
α = 0.08, λ = 0.9, γ = 1 and those for the teacher are ε = 0.001, α = 0.02,
λ = 0.99, γ = 0.99. For Rstudent, the number of tilings is 8 and the number of
segments in one tiling is 16× 16.

5.2 Implementation of the RL teacher

The state of the teacher is represented by families of independent features. Recall
that the teacher state steacher=(sstudent, astudent, b, ne) is a tuple containing the
student’s current state sstudent in Stask, the student’s declared action astudent in
Atask, the remaining budget b and the learning episode number ne. The number
of tilings is set to 8 for each component of steacher. The families of features are:

10 Teacher-Student Framework: A Reinforcement Learning Approach

– A set of features gi(sstudent, ateacher) jointly representing the student’s po-
sition and her velocity and a teacher’s action ateacher corresponding to the
decision of advising or not. The tiling structure corresponding to the stu-
dent’s state is qualitatively similar to the student’s state representation (but
the actual positions of the tilings differ from those of the student’s own
representation). The number of gi’s is therefore ng = 16×16×8×2 = 4096.

– A set of features hi(astudent, ateacher) representing the action astudent an-
nounced by the student (backward, no acceleration,forward). There are there-
fore nh = 3× 8× 2 = 48 of features of this type.

– A set of features mi(b, ateacher) representing the available budget (the max-
imum allowed budget bmax is discretized into bbmax/3c slots). For the mi’s,
the number of features is nm = bbmax/3c × 8× 2.

– A set of features li(ne, ateacher) that discretize the number of episodes into
bnmax/3c subintervals (to have a fine-grained representation of the temporal
position of the current episode in the training session) where nmax is the
maximum allowed number of episodes of a session. There are nl = bnmax/3c×
8× 2 features of type li.

Thus, the functional approximation of Q(s, a) for the teacher is computed as

Q(steacher, ateacher) ≈ψθ(steacher, ateacher)

where

ψθ(steacher, ateacher) =

ng∑
i=1

gi(sstudent, ateacher)θ
g
i +

nh∑
i=1

hi(astudent, ateacher)θ
h
i +

nm∑
i=1

mi(b, ateacher)θ
m
i +

nl∑
i=1

li(ne, ateacher)θ
l
i

with the parameter vector θ decomposed as (θg, θh, θm, θl).

5.3 Implementation of max-update

Recall the set of indices of active features in state-action pair (s, a) is denoted
F (s, a) = {i | fi(s, a) = 1}. We denote with θ(F (s, a)) the tuple of the corre-
sponding components of parameter θ. Thanks to the two assumptions (i) and
(ii) of the tiling structure, the update (Equation 7) for our max-update approach
can be simplified and written as follows:

θ(F (sr, ar)) = θ(F (sr, ar)) + α× [θ(F (sr, amax))− θ(F (sr, ar))] (13)

Vector θ(F (sr, ar)) can be seen as the output vector of a neural networks, and
θ(F (sr, amax)) as the desired vector. This update is a well-known gradient de-
scent and helps make θ(F (sr, ar)) converge to θ(F (sr, amax)).

Teacher-Student Framework: A Reinforcement Learning Approach 11

Fig. 2. Average reward of students at different levels of training of a RL teacher.

5.4 Experimental Results

In the experiments, we compare the heuristics proposed by Torrey and Taylor
[18] and our approach based on representing the teacher as an RL agent. All plots
are averaged over several runs, and the threshold of mistake correcting has been
optimized to obtain the best performance (indeed if the threshold is too high, the
heuristic will perform suboptimally as it will not spend all the available budget;
conversely, if it is too low it will perform poorly as advice will be given also when
not particularly relevant). We do not display the importance advising strategy
because it is always outperformed by mistake correcting, since we assume that
we are in a setting in which the learner agent announces her intended action
before the teacher has the possibility of providing advice (importance sampling
ignores this piece of information).

The RL teacher needs to interact with several learners before it learns a near-
optimal teaching policy. In Figure 2 we plot the student’s reward in function of
the number of episodes of training for a teacher at different levels of training
(different number of sessions with students). As expected, the student’s perfor-
mance improves when the teacher is more experienced. The teacher finishes to
learn after approximately 8000 sessions (learning ends when Q-values converge).

In the following experiments we consider the performance of a fully trained
RL teacher (meaning that the agent has already completed a number of sessions
with different students, each composed of several episodes, until the teaching
policy has converged). In Figures 3-6 we compare our RL teacher to the heuristics
presented in Section 3 for a variety of values of the total available budget. We

12 Teacher-Student Framework: A Reinforcement Learning Approach

Fig. 3. Average reward of students with the fully trained RL teacher, compared to early
advising and mistake correcting (budget=25; threshold for mistake correcting=76)

Fig. 4. Average reward of students with the fully trained RL teacher, compared to early
advising and mistake correcting (budget=50; threshold for mistake correcting=148)

Teacher-Student Framework: A Reinforcement Learning Approach 13

Fig. 5. Average reward of students with the fully trained RL teacher, compared to early
advising and mistake correcting (budget=75; threshold for mistake correcting=128)

Fig. 6. Average reward of student with the fully trained RL teacher, compared to early
advising and mistake correcting (budget=100; threshold for mistake correcting=4)

14 Teacher-Student Framework: A Reinforcement Learning Approach

can notice that our RL teacher performs very well, outperforming the other
strategies in all but one scenario (the high budget setting where all strategies
perform roughly the same). Indeed, the bigger is the budget, the better are
the performances of all teachers. The simplest strategy, early advising, performs
poorly in most cases, but when the budget is high it becomes successful: the
student will complete the task following the teacher’s advice in each step of the
first episode; given the pessimistic initialization of Q-values, the student will
subsequently follow the same trajectory in successive episodes (except in some
exploratory moves occurring with low probability).

As mentioned above, the threshold for mistake correcting has been tuned for
best performance. It is interesting to notice that there is not a simple correlation
between this threshold and the available advice budget. Indeed, the best thresh-
old is somewhat low with a budget of 25 or 100 (Figures 3 and 6), and high for
a budget of 50 or 75 (Figures 4 and 5). An explanation of this may be that if
there is not enough budget, mistake correcting cannot be of too much help, on
the other end, if one can give advice often, the problem becomes trivial because
the student can reach the goal in the first episode just following the teacher’s
advice all the time.

These experimental results show that our RL teacher (when fully trained)
is effective in advising students; moreover we do not have to rely on manual
parameter optimization as mistake correcting does. The superior performance
of our RL teacher can be explained in many ways. Intuitively, we postulate
that the RL teacher is capable of autonomously discovering which states are
more important, also in relation to the point of the session. Since actions are
represented as features, the teacher can also learn that putting the motor in
neutral position is a less severe error than moving forward when instead one
should move backwards (so in the first case giving advice might not be necessary,
while in the second case it will be). The availability of information about the
episode in the teacher’s state is crucial for learning an effective teaching policy.
Indeed, for a given pair (state, action) in two different episodes of the session,
we do not necessarily give advice in both.

In a final experiment, we compare the two alternative ways of using a piece of
advice given by the teacher: informed exploration and max-update. In Figures 7-8
we show (for different values of the budget) how our proposed method (max-
update) consistently enhances the heuristic strategies presented in Section 3. We
are currently working on integrating this technique into our RL teaching agent.

6 Conclusions

In this paper we introduced a reinforcement learning approach to learning how
to give advice to another RL agent (the student) in order to optimize the use
of advice since only a limited number of suggestions can be given. The agent
acting as a teacher observes the student’s actions but cannot monitor nor change
anything internal to the student.

Teacher-Student Framework: A Reinforcement Learning Approach 15

Fig. 7. Student’s reward considering different heuristics with either informed-
exploration or max-update (budget = 50; threshold for mistake correcting with in-
formed exploration: 148; threshold for mistake correcting with max update: 160)

Fig. 8. Student’s reward considering different heuristics with either informed-
exploration or max-update (budget = 75; threshold for mistake correcting with in-
formed exploration: 128; threshold for mistake correcting with max update: 140)

16 Teacher-Student Framework: A Reinforcement Learning Approach

This “teaching on a budget” setting was introduced by Torrey and Taylor
[18], with the specific goal of studying “the idea of how an RL agent can best
teach another RL agent” but the authors did not pursue this vision all the way
through, as in fact their teacher agent follows very simple if-then-else heuristic
rules to decide whether to give advice or not.

In our work the teaching task is modeled as an RL problem whose state,
in addition to the state of the student, includes information about the current
teaching session (the action that the student is intended to perform, the available
advice budget, the number of the episode); her possible actions represent the
decision of whether giving advice or not in the current state of the student.
With simulations, we showed that our techniques are competitive with respect
to previously proposed heuristic techniques. Our RL teacher is effective because
it can adaptively learn in which states and in which moment of the training
session advice is more needed, it can learn how to spend well her budget when
the budget is critically low and it is able to learn that a student agent who
chooses a good enough action does not need advice.

We also considered an improved way on how the student can exploit the
advice it receives from the teacher. Our max-update strategy manipulates the
estimated Q-values in order to be consistent with the information that the sug-
gested action is the best in that particular state. This come at the expense of
a considerable modification of the student’s architecture and of additional com-
putation. We experimentally proved this idea to be successful in improving the
mistake-correcting heuristics, but we did not yet implement it in our RL teacher.

We can extend our approach empowering our RL teacher with a classifier
able to predict what the agent will do next (in the same way as the predictive
advising strategy of Torrey and Taylor [18]) so that the communication between
the two agents can be simplified, removing the assumption that the learner agent
pre-announces her intended action to the teacher.

Other possible directions for future works include experimentation in other
domains, evaluating how effective advising is when the teacher’s policy is near-
optimal, a setting with multiple teachers and/or multiple learners, and different
types of feedbacks (including pairwise comparisons of actions as in the work of
Cohn et al. [6], advice requested by the student, noisy advice).

Acknowledgments

Funded by the French National Research Agency under grant ANR-10-BLAN-
0215.

References

1. Riad Akrour, Marc Schoenauer, and Michèle Sébag. April: Active preference
learning-based reinforcement learning. In Peter A. Flach, Tijl De Bie, and Nello
Cristianini, editors, ECML/PKDD (2), volume 7524 of Lecture Notes in Computer
Science, pages 116–131. Springer, 2012.

Teacher-Student Framework: A Reinforcement Learning Approach 17

2. Riad Akrour, Marc Schoenauer, and Michèle Sébag. Interactive robot education.
In ECML/PKDD Workshop Reinforcement Learning with Generalized Feedback:
Beyond Numeric Rewards, 2013.

3. Brenna Argall, Sonia Chernova, Manuela M. Veloso, and Brett Browning. A sur-
vey of robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

4. Aude Billard and Maja J. Mataric. Learning human arm movements by imitation:
: Evaluation of a biologically inspired connectionist architecture. Robotics and
Autonomous Systems, 37(2-3):145–160, 2001.

5. J.A. Clouse. On integrating apprentice learning and reinforcement learning. PhD
thesis, University of Massachussets, 1996.

6. Robert Cohn, Edmund H. Durfee, and Satinder P. Singh. Comparing action-query
strategies in semi-autonomous agents. In Wolfram Burgard and Dan Roth, editors,
AAAI. AAAI Press, 2011.

7. Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park.
Preference-based reinforcement learning: a formal framework and a policy iteration
algorithm. Machine Learning, 89(1-2):123–156, 2012.

8. Ronald A. Howard. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA, 1960.

9. W.B. Knox, M.E. Taylor, and P. Stone, editors. Understanding Human Teaching
Modalities in Reinforcement Learning Environments: A Preliminary Report, 2011.

10. J. Kober, J.A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey.
International Journal of Robotics Research, July 2013.

11. Adam Laud and Gerald DeJong. The influence of reward on the speed of reinforce-
ment learning: An analysis of shaping. In Tom Fawcett and Nina Mishra, editors,
ICML, pages 440–447. AAAI Press, 2003.

12. L.J. Lin, editor. Programming Robots Using Reinforcement Learning and Teaching,
1991.

13. A.Y. Ng, D. Harada, and S. Russell, editors. Policy in variance under reward
transformations: Theory and application to reward shaping, 1999.

14. Satinder P Singh and Richard S Sutton. Reinforcement learning with replacing
eligibility traces. Machine learning, 22(1-3):123–158, 1996.

15. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). A Bradford Book, March 1998.

16. Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10:1633–1685, 2009.

17. A.L. Thomaz and C. Breazeal, editors. Reinforcement Learning with Human Teach-
ers: Evidence of Feedback and Guidance with Implications for Learning Perfor-
mance, 2006.

18. Lisa Torrey and Matthew E. Taylor. Teaching on a budget: Agents advising agents
in reinforcement learning. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), May 2013.

