

OFF-POLICY NEURAL FITTED ACTOR-CRITIC

Toward a data efficient neural actor-critic

{ MATTHIEU.ZIMMER, YANN.BONIFACE AND ALAIN.DUTECH }@LORIA.FR

PROBLEM

Reinforcement learning (RL) is a framework for solving sequential decision problems where an agent interacts with its environment and adapts its policy based on a reward signal. We present an RL algorithm respecting two main requirements while being most data efficient possible :

- 1. dealing with **continuous action and state** spaces,
- 2. knowledge added by the designer to the agent should be minimal.

Method

Actor-critic is a solution to handle **continuous actions spaces** in Markov Decision Process (S, A, R, T, γ) . The critic learns the value-function Q_{π} that describes the expected return following π after the state s. The goal of the actor is to decide which action to take in which state, by finding the best policy according to Q:

$$Q_{k+1} = \underset{Q \in \mathcal{F}_{c}}{\operatorname{argmin}} \sum_{\substack{s_{t}, a_{t}, r_{t+1}, s_{t+1} \in \mathcal{D}}} \min(1, \frac{\pi_{k-1}(a_{t}|s_{t})}{\pi_{b}(a_{t}|s_{t})}) \left[Q(s_{t}, a_{t}) - (r_{t+1} + \gamma Q_{k}(s_{t+1}, \pi_{k}(s_{t+1})))\right]^{2},$$

$$\pi_{k+1} = \underset{\pi \in \mathcal{F}_{a}}{\operatorname{argmax}} \sum_{\substack{s_{t} \in \mathcal{D}}} Q_{k+1}(s_{t}, \pi_{k}(s_{t})).$$

2.a) critic update

```
\gamma r_t + \gamma Q(s_{t+1}, \pi(s_{t+1})) \longleftarrow \pi(s_{t+1})
```

CONTRIBUTIONS

Inspired by Fitted Q Iteration (FQI) [1] and Deep Deterministic Policy Gradients (DDPG) [2], we formulated a new off-policy, non-linear, off-line, model-free, actor-critic algorithm. Unlike FQI, it deals with continuous action and state spaces and performs better than DDPG on three experimental environments.

ALGORITHM

Data: \mathcal{D} replay buffer of N samples, Q_0 value-function, π_b previous policies, Knumber of fitted iteration, G number of gradient descent for actor updates,

	FAC [3]	DDPG [2]	NFAC+ [4]	CACLA+	DENFAC
Offline & Batch	×		×		×
Off-policy	×	×			×
Fitted Critic	×		×		×
Actor updated through ∇Q	×	×			×
Learn Q	×	×		×	×
Reset Networks			×		×
Retrace					×
Target Networks		×			
Batch Normalization		×	\times (+)	\times (+)	×

inverting_gradient **strategy**, *reset_critic* **strategy**

for $k \leftarrow 1$ to K do

for $(s_t, a_t, u_t, r_{t+1}, s_{t+1}) \in \mathcal{D}$ do $q_{k,t} \leftarrow r_{t+1}$ if $s_{t+1} \notin S^*$ then $|q_{k,t} \leftarrow q_{k,t} + \gamma Q_{k-1}(s_{t+1}, \pi_{k-1}(s_{t+1}))$ end

end

 $Q_k \leftarrow Q_{k-1}$

if reset_critic then

 $| Q_k \leftarrow randomly initialize critic network$

end

Update critic by minimizing the loss:

Randomly initialize actor network π_k

RESULTS

Median and quartile of the best registered performance in Acrobot (lower better) and Cartpole

(higher better) environment during RL learning.

REFERENCES

[1] Martin Riedmiller. Neural fitted Q iteration - First experiences with a data efficient neural Reinforcement Learning method. In *Lecture Notes in Computer Science*, volume 3720 LNAI, pages 317–328, 2005.

FUTURES DIRECTIONS

In order to increase **data efficiency**, it should be analyzed if a First-In First-Out (FIFO) queue is the best choice for \mathcal{D} . Slowing down the change in the policy might increase his stability [5]. Finally, a better exploration strategy, that also take into account the previous collected data, is another possibility to deepen.

for $g \leftarrow 1$ to G do Update the actor policy using the batch gradient over \mathcal{D} : if inverting_gradient then $\nabla_a = \nabla_a \cdot \begin{cases} \frac{a_{max} - a}{a_{max} - a_{min}} & \text{if } \nabla_a < 0 \\ \frac{a - a_{min}}{a_{max} - a_{min}}, & \text{otherwise} \end{cases}$ end $\nabla_{\theta^{\pi_k}} \pi_k = \frac{1}{N} \sum_{t=1}^N \nabla_a Q(s_t, a)|_{a = \pi_k(s_t)} \nabla_{\theta^{\pi_k}} \pi_k(s_t)$ end end

- [2] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
- [3] András Antos, Rémi Munos, and Csaba Szepesvari. Fitted Q-iteration in continuous action-space MDPs. 2008.
- [4] Matthieu Zimmer, Yann Boniface, and Alain Dutech. Neural Fitted Actor-Critic. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2016.
- [5] John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Region Policy Optimization. *International Conference on Machine Learning*, page 16, 2015.

SOURCE CODE

The source code and data

are available at :

drl.gforge.inria.fr

