Reinforcement learning (RL) is a framework for solving sequential decision problems where an agent interacts with its environment and adapts its policy based on a reward signal. We present an RL algorithm respecting two main requirements while being most data efficient possible:

1. dealing with continuous action and state spaces,
2. knowledge added by the designer to the agent should be minimal.

Contributions

Inspired by Fitted Q Iteration (FQI) [1] and Deep Deterministic Policy Gradients (DDPG) [2], we formulated a new off-policy, non-linear, off-line, model-free, actor-critic algorithm. Unlike FQI, it deals with continuous action and state spaces and performs better than DDPG on three experimental environments.

Algorithm

Data: D replay buffer of N samples, Q_k value-function, π_k previous policies, K number of fitted iteration, G number of gradient descent for actor updates, inverting gradient strategy, reset_critic strategy

```
for $k \leftarrow 1$ to $K$ do
  for $(s_t, a_t, r_{t+1}, s_{t+1}) \in D$ do
    $Q_{k+1} \leftarrow r_{t+1}$
    if $s_{t+1} \notin S^*$ then
      $Q_{k+1} \leftarrow Q_{k+1} + \gamma Q_{k-1}(s_{t+1}, \pi_{k-1}(s_{t+1}))$
    end
  end
  $Q_k \leftarrow Q_{k-1}$
  if reset_critic then
    $Q_k \leftarrow$ randomly initialize critic network
  end
  Update critic by minimizing the loss:
  $$\frac{1}{N} \sum_{i=1}^{N} \min(1, \frac{\pi_{k-1}(a_i | s_i)}{\pi_k(a_i | s_i)}) \left( Q_{k+1} - Q_k(s_t, a_t) \right)^2$$
  Randomly initialize actor network $\pi_k$

for $g \leftarrow 1$ to $G$ do
  Update the actor policy using the batch gradient over $D$:
  If inverting gradient then
  $$\nabla_a = \nabla_{\pi_k} \left\{ \begin{array}{ll} a_{max} - a & \text{if } \nabla_a < 0 \\ a_{max} - a_{min} & \text{otherwise} \end{array} \right. \nabla_a$$
  end
  $$\nabla_{\pi_k} \pi_k = \frac{1}{N} \sum_{i=1}^{N} \nabla_a Q(s_t, a)_{a=\pi_k(s_t)} \nabla_{\pi_k} \pi_k(s_t)$$
end
```

Results

Median and quartile of the best registered performance in Acrobat (lower better) and Cartpole (higher better) environment during RL learning.

References

Future Directions

In order to increase data efficiency, it should be analyzed if a First-In First-Out (FIFO) queue is the best choice for D. Slowing down the change in the policy might increase his stability [5]. Finally, a better exploration strategy, that also take into account the previous collected data, is another possibility to deepen.

Source Code

The source code and data are available at:

drl.gforge.inria.fr